Inducible error-prone repair in Escherichia coli.
نویسنده
چکیده
A hypothesis that ultraviolet-induced mutagenesis arises from the induction of an error-prone mode of postreplication repair that requires the exrA+ recA+ genotype has been tested with alkaline sucrose gradient centrifugation coupled with assays of fixation determined by loss of photoreversibility. The inhibitor of protein synthesis, chloramphenicol, added before irradiation, prevented a small amount of postreplication repair and completely eliminated mutation fixation in E. coli WP2s uvrA. However, chloramphenicol did not affect strand joining: (a) in uvrA bacteria allowed 20 min of growth between irradiation and antibiotic treatment; (b) in nonmutable uvrA exrA bacteria; and (c) in uvrA tif bacteria grown at 42 degrees for 70 min before irradiation. These observations indicate that an inducible product is involved in a fraction of postreplication repair and is responsible for induced mutagenesis.
منابع مشابه
The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism.
Damage-inducible mutagenesis in prokaryotes is largely dependent upon the activity of the UmuD'C-like proteins. Since many DNA repair processes are structurally and/or functionally conserved between prokaryotes and eukaryotes, we investigated the role of RAD30, a previously uncharacterized Saccharomyces cerevisiae DNA repair gene related to the Escherichia coli dinB, umuC and S. cerevisiae REV1...
متن کاملInducible UV repair potential of Pseudomonas aeruginosa PAO.
Pseudomonas aeruginosa PAO lacks UV-inducible Weigle reactivation and Weigle mutagenesis of UV-damaged bacteriophages. This lack of UV-inducible, error-prone DNA repair appears to be due to the absence of efficiently expressed umuDC-like genes in this species. When the P. aeruginosa recA gene is introduced into a recA(Def) mutant of Escherichia coli K12, the P. aeruginosa recA gene product is c...
متن کاملMutagenic DNA repair in Escherichia coli: conditions for error-free filling of daughter strand gaps.
Two situations have been observed in which daughter strand gaps in DNA synthesized after exposure of excision-deficient Escherichia coli to ultraviolet light are filled but in which no mutations are formed as judged by loss of photoreversibility: (i) during the first 20 min of growth after u.v. irradiation, and (ii) when repair is allowed to occur in buffer. We suggest as an explanation that th...
متن کاملA mutant of Escherichia coli showing constitutive expression of the lysogenic induction and error-prone DNA repair pathways.
A mutant of E. coli (designated the STS mutant) has been isolated in which the phage induction and error-prone DNA repair pathways appear to be expressed constitutively without the cells having received an inducing signal. Phage lambda was not able to lysogenize this mutant, whereas a noninducible mutant of lambda, lambdacIind-, known to synthesize a repressor that is insensitive to the inducti...
متن کاملImpact of a stress-inducible switch to mutagenic repair of DNA breaks on mutation in Escherichia coli.
Basic ideas about the constancy and randomness of mutagenesis that drives evolution were challenged by the discovery of mutation pathways activated by stress responses. These pathways could promote evolution specifically when cells are maladapted to their environment (i.e., are stressed). However, the clearest example--a general stress-response-controlled switch to error-prone DNA break (double...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 72 7 شماره
صفحات -
تاریخ انتشار 1975